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Using previously deveioped principles of thermodynamics in the presence of fields a generalized set of
field-dependent, extensive and intensive, thermodynamic variables is formulated. It is shown that exten-
sive variables can depend on field constraints in the same way as the intensive ones do. Using these gen-
eralized variables, Maxwell relations are formulated and then tested under different field constraints.
Conventional magnetic field systems are used to evaluate directly thermodynamic variables, which are
then compared to those predicted by the theory. This provides a direct test and the means to illustrate
the validity and significance of the theory in magnetic circuits. These tests involve uniform fields, con-
tinua and discrete systems that are subject to different field constraints. In this way the dependence of
the thermodynamic variables on the field constraints is verified both directly and by the theory. The case
of a sphere in a uniform field is used to show how thermodynamic variables can be defined in discrete
systems. To this end an effective thermodynamic permeability of the sphere is defined. This facilitates
the use of a model where the field is considered to be entirely within the boundary of the sphere, as if it
were an ordinary thermodynamic system. It is shown that for this discrete system, there are more ways
to define the magnetic chemical potential as compared to the case of a continuum. This is due to the fact
that field constraints can be imposed independently on the sphere and on the uniform field. The
significance of the volume of a subsystem that contains the sphere is considered. It is shown that the
magnetic energy of this subsystem is a function of the volume of the sphere but not of that of the subsys-
tem. This provides further insight concerning the significance of variables, such as volume, when the
thermodynamics of a system is considered in the presence of fields. Finally, it is shown that, for the
sphere, the ratio of the work delivered by a current source to build the field to the one that is delivered to
an external mechanical work source, that balances quasistatically the magnetic pull, is one-third or less.

PACS number(s): 05.70.Ce, 41.20.Gz

I. INTRODUCTION

In a previous publication [1], fundamental aspects of
thermodynamics in the presence of electromagnetic fields
were formulated. It was shown that electromagnetic en-
ergy cannot be treated by ordinary thermodynamic for-
mulation and consequently, the pressure and chemical
potential, in the presence of quasistatic electromagnetic
fields, are not unique in the sense that their form depends
on constraints set on these fields. The theory has been
presented in detail for the case of a linear magnetic ma-
terial in the form of a continuum and then was extended
for the case of discrete systems. In this work we formu-
late a generalized set of thermodynamic variables and
Maxwell relations in the presence of fields and consider
their significance. The applicability of the theory is then
tested in specific case studies that facilitate unambiguous
formulation of the field, transfer of energy, and mass, and
of related thermodynamic variables. In this context, an
attempt is made to provide an in-depth thermodynamic
analysis of magnetic field systems aiming at better under-
standing of the significance of related field-dependent
variables.

1063-651X/96/53(4)/3173(19)/$10.00 53

II. THEORY
A. Formulation of field-dependent variables

The change of internal energy of a system in the ab-
sence of fields can be presented in the following form:

n
dU’'= Y £dX; , (1)
i=0
where U’ is the internal energy, X; is the ith independent
extensive variable, and &; is given by

§=QU' /X))y, J'F#i, LJ'=0,1,...,n. Q)

If the change of internal energy of a system due to the
presence of a field is denoted by dUjy, then the change of
the total internal energy (i.e., dU"') is given by
n
dU"=dU'+dU,=

i=

&:dX;+dU, . 3)
0

Since both U" and U’ are state functions, it follows that
U, must also qualify as a state function and hence dU,
must be an exact differential [1]. If U, is a function of
m’’ independent variables Y,,, 1 <m <m’’, then
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Up=UplY, Yy, ..., Ypo) . 4)

Suppose further that for m’' <m <mgy, my=m",

m(§o’§1’--~,§n) ’ (5)

whereas for my=<m <m",

Y, =Y, (X0, X,...,X,) . (6)
Hence
mz—l - 2‘ an
ayY,, .aY,,
+ 5 il éaY (7
m=m, aY,, <, 9X;

Consider the following Legendre transformation of U’:

U8 -+ s EpXjits -+ s Xy)
Jj
=U'(Xp,X(,...,X,)— 3 &EX,, (8
i=0
h
U”’——Zng, > &dX;,
i=0 i=j+1
j:—.l’o""’n’ (9)
where j=—1 denotes the case of the original un-

transformed energy, i.e., the first sum on the right-hand
side of Eq. (9) vanishes and U’’=U’. Combining Eqgs. (7)
and (9) followed by rearrangement of terms gives

dU=dU"" +dU;,

=—§j‘,)?,d§,+ 2 E.dx,

=0 i=j+1
é "o 13U, 3Y,
i=j+1m:m’aYm agz
+3 S oY, oy E Y gy, . o
v +
i:Omzmoaym aX,- Xi . 9Y,,
where
R=x m02—1an M o j (11)
X v Az 0 TV,
! m:m’aYm agl
+ 5 U O, Ly (12)
£§,=&; m=moaYm X, ’ i=j+1,...,n.
Thus setting Y,, =const for m=1,...,m’'—1, §; =const
fori=j+1,...,n,and X;=const for i =0, ..., j gives
dU=—2,?d§,+ z £.dx, (13)

i=j+1

(Y,,=const for m=1,...,m'—1, §&,=const for
i=j+1,...,n, and X;=const for i =0,...,j). Equa-
tion (13) has been derived here with a view to present the
counterpart of Eq. (9) in the presence of fields. Note that
in the absence of fields, X, =X, and £, =&, and the con-
straints included in Eq. (13) do not exist. Thus, the
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unique feature imparted by the presence of fields is that
X; and £, are replaced by X, and &, ;» subject to the condi-
tion that the constraints set in Eq. (13) be satisfied.

Equation (12) has already been derived for the general
case of the jth system under the action of k' fields [1],
while here it is given for one field only. In contrast, Egs.
(11) and (13) have not been derived in this general form
and their meaning is yet to be elucidated.

Equations (11), (12), and (13) show that in the presence
of fields

—Q@U /3¢y, ¢, v, =X #X; ,
my

k,1=0,1,...,n, k¥i, (14)
m;=1,...,m'—1, i=0,...,j.

(U /3X; )gl,Xk,Ym:éﬁég,. ,

k,1=0,1,...,n, k¥i, (15)
m;=1,...,m'—1, i=j+1,...,n

Furthermore, from Eq. (10),

(U /3E;)x ¢, v =m071 My 2o,

*Sk Tmy " 0Y,  0§;
k,l1=0,1,...,n, k#i, (16)
m=1,....m'—1, i=j+1,...,n;

m” QU 97,
(aU/aX,«)gl,Xk,le=m:m0ﬁ—aX—':’ :
k,1=0,1,...,n, k¥i, 17)
m=1,...,m'—1, i=0,1,...,j.

It follows that for fixed le, m;=1,...,m’'—1, where
Y, is independent of both X; and &;, i =0, ...,n, the

partial derivative of the energy with respect to an exten-
sive variable does not yield its intensive conjugate, which
prevails in the absence of the field. Similarly the partial
derivative of the transformed energy with respect to an
intensive variable does not yield the negative of its exten-
sive conjugate that prevails in the absence of the field.
This is a unique property of thermodynamic systems in
the presence of fields. Alternatively the presence of fields
can be the reason for the above effects.

Equations (11) and (12) also show that if U, /3Y,, de-
pends on the field constraints, as indeed is the case with
magnetic fields [1], then neither X, ; nor g, is unique, i.e.,
in the sense that they take different forms under different
field constraints. This property is illustrated in the se-
quel.

Equation (13) appears to be a generalization of Eq. (9)
for systems in the presence of fields. It reduces to Eq. (9)
if

aY,, /9&,=0

(m'=m<m,, i=0,1,...,j)

and

Y, /0X;=0 (my=m=m”, i=j+1,...,n)
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are satisfied, simultaneously.

The second term on the right-hand side of Eq. (12) was
shown to depend on field constraints in the case of mag-
netoquasistatic fields. The results [1] for a linear magnet-
izable continuum at fixed B and fixed H are summarized
by the following equations. At fixed B,

PB7N=P—%H-B —H? %% , (18)

§B,V=§—%H2%% ; (19)
at fixed H,

Pyn= P—%H B+ — H2 —a% , (20)

L,y =4+ 2H25’§ , 1)

where u, p, H, and B are permeability, density, magnetiz-
ing field, and magnetic induction, respectively:

B=uH . (22)

Note that the subscripts in Egs. (18)—(21) denote the vari-
ables held constant when the pressure or chemical poten-
tial is evaluated. For example, {p , is evaluated at con-
stant B and V. We show now how Eq. (18) is derived
from Eq. (12). In this case i =1, X; denotes the volume
V, &;, the pressure —P in the absence of field, and §, the
pressure —Pg y in the presence of a field that is con-
strained at fixed B. In this case

U;=UyB,u, V)=1VB*/u , (23)
u=ulp,T), (24)
p=N/V, (25)

where N, V, and T are mass, volume, and temperature,
respectively.

Note that henceforth vectors and their moduli are
denoted by boldface and regular fonts, respectively. This
notation has already been used in Egs. (18)-(25).

In accordance with the convention set by Egs. (5) and

(6) where Y,, is either a function of intensive or extensive
variables but not of both, we define u=pu(T) at fixed p
and u=u(p)=w(N, V) at fixed T. This gives

U,=Uf(Y,,Y,,Y;,Y,), (26)
where
Y, =B, Y,=u(T), Y;=u(N,V), Y,=V. 27)

In this case, m'=2, my=3, and m"' =4.

Recall that the entropy was not transformed and hence
T must be fixed under the condition of Eq. (13). Further-
more, by definition of Pg n, B and N are also fixed.
Hence

U, U

;90U _
v a7 0 (28)
aU, dY; _9%Urou|_p :inp—alLi (29)
Y, 3V 3 dp | V| 27 Top’

where here use was made of Eq. (23) and then of Eq. (22).

oU, aY 1 1
S 4 2, =
= =—H-B. 30
oY, av 22 /73 30

Combining Egs. (12), (28), (29
fact that &§; = — P gives

), and (30) and using the

=— |P—-HB——H>ZE | . 31
Si 2 27 9 GD
Recall that here &, = —Pg y, Eq. (18) is obtained.

Suppose we transform only the entropy so that in Egs.
(8) and (9) j =0, the result being the Helmholtz potential.
In this case, letting i =0, we identify in Eq. (11), X, =S
and X,=S5 so that £§,=T. The only variable that is a
function of T'is Y,. Hence

dY, 9T ou oT’ (32)
at fixed B,

Ea%f = va?, (33)
whereas at fixed H,

Ea%f = vH?. (34)
Thus at fixed B,

Sp=5+— VHZSL;: (35)
whereas at fixed H,

Su=5— Ly (36)

2 oT

Equation (35) is well known [2,3]. It gives the entropy of
the system in the presence of a magnetic field, subject to
the constraint that no field-related energy exchange, be-
tween the system and its surroundings, is allowed. This
condition is embodied in B being fixed.

Equation (36) gives the entropy under the constraint
that there must be such a field-related energy exchange,
i.e., with the current source of the field. In this sense the
entropy of the current source that is related to its interac-
tion with the system is coupled with that of the system.
Assuming that du/90T <O, this gives a larger effective
value for the total entropy. This shows that under the
conditions where the system does, or receives,
temperature-dependent work from an external current
source its entropy cannot be isolated from that of this
source. If the system does work on the source due to in-
crease in its temperature, then the coupled or effective en-
tropy increases. However, when it receives work from
this source, due to a decrease in its temperature, then its
effective entropy decreases, i.e., as compared to the entro-
py in the absence of the field. Note that this coupling of
entropy has been defined for discrete systems [1], e.g., re-
garding the field they generate outside their own boun-
daries, and here its meaning is extended to coupling be-
tween the system and its source of field.
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We are in position now to introduce Maxwell relations
for systems in the presence of fields, and in particular in
the presence of magnetoquasistatic fields.

B. Maxwell relations in the presence of fields

Equation (10) can be used to derive Maxwell relations
in the presence of fields. However, at this point, Eq. (13)
is used to this end since, despite its narrower scope, it has
the same form as Eq. (9), which is its thermodynamic
counterpart in the absence of fields. The full scope of
Maxwell relations is given in Appendix A.

The following Maxwell relations can be derived from
Eq. (13) for its complete range of existence, i.e.,
j=—1,0,...,n. Recall that, by definition, if j=—1,
Eq. (13) reduces to the original untransformed form of
the energy. Similarly if j =n, then the last term (i.e., for
i=n +1) vanishes or simply does not exist. Here the
Maxwell relations in the presence of fields is given by
three sets of equations:

aé\"l agiz C e
SX_I'Z - = aXi1 - s I3FF,, 470, (37)
35 4 5
where
iia=j+1,...,0, iyinis=0,...,n,
X, B ax; Ty
Eét 5,-3,X,-5_ agil §i4,x,.5’ i3750,, i45%0,, (38
where
i1,i,=0,...,j, i3,i4,i5=0,...,n,
X, | 3,
axX;, Xi3,§i4_ g, §"5’X“e,
isFiy,is7iy ,  (39)
where
i1=0,...,j, hL=j+1,...,n,
i3,iarisyig=0,...,n .

In the absence of fields Egs. (37), (38), and (39) reduce to
the conventional Maxwell relations, provided that the
constraints set in conjunction with Eq. (13) are lifted, i.e.,
that &; and X; are no longer constant for i =j +1,...,n
and i =0, ..., ], respectively. For example, consider the
potential U'"'(T, V,{) for which

dU"(T,¢,V)=—SdT —Nd{—PdV . (40)

Note that the order of terms in Eq. (40) expresses the
convention [see Eq. (9)] that all transformed variables are
grouped first. In this case § is the chemical potential,
j=1,and n =2.

Letting i;=0, i,=1 (e, X; =X,=5, gil =T and
X;,=X,=N, §;, =¢) and using Eq. (38) gives
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as

ile eV '

Here gis was found to be T since i; =0, 1 (but not 2 since

ay

3T (41)

.V

the field is absent and the constraint for j +1=n =2 has
been lifted) and i;5i, =1, which means that §i3#§[2=§:
Similarly § i4=§ and X i is found to be V¥, since

is=j +1=2, which corresponds to the third term on the
right-hand side of Eq. (40).
Using Eq. (39) gives

as
14

oP
aT

(43

. (42)
V.g

Here the only extensive variable is X;,=V and hence

i¢=i,. Moreover, i;7i, means that none can be as-
signed to X iy The variable & i, can be either T or § since

i, is either O or 1, but not 2 since the constraints of Eq.
(13) have been lifted. In contrast, § i, can only be § since
isi.

Next we show, as an example, the validity of a
Maxwell relation, which is derived from the generalized
Helmholtz potential for the case of a linear magnetizable
continuum. The field-dependent Helmholtz potential Fis
expressed in a differential form as

df =—8dT —Pdv +EdN 43)

and its Maxwell relations are given by

oP _ | 8
aN T, V,a_ aV T,N,a ’ (44)
38 oP
0 = |%x , (45)
a T,N,a oT V,N,a
a8 L
~ | A = » (46)
d T,V,a aT V,N,a

where a denotes the three-variable set S, P,§.

Note that in Egs. (44), (45), and (46) all variables held
fixed are not field variables. The first two of each five-
variable subscript appear also in the absence of the field,
whereas the last three that are represented by a are a
consequence of its presence. The validity of Eq. (44) is
shown here while that of Egs. (45) and (46) can readily be
shown in a similar way.

Equations (44)—(46) must be supplemented with addi-
tional information concerning the constraints that are
imposed on field variables. The simplest but not the only
possible constraints are either fixed B or fixed H. First
consider imposing the constraint that B is fixed.

1. Fixed B

In this case we identify P as Py y and £ as &g,y Com-
bining Eqgs. (18), (19), and (44) gives
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—lalp—LtuB-LtH2pd /aN
2 2 op T.V.a
= lo|c— L Jov 47)
2 ap T,N,a

Equation (47) must be tested if it holds in the presence as
well as in the absence of the magnetic field, i.e., H=0,
where a must be excluded from the subscripts of Eq. (47).
This gives

—(8P/3N) 7,y =(3E/3V )y - (48)

Equation (48) is a well-known and valid Maxwell relation.
In the presence of fields and under the constraints im-
posed on Eq. (13), P and § are fixed and it remains to be
shown that the field-dependent terms, on the right- and
left-hand sides of Eq. (47), reduce to the same field-
dependent function. Using N =pV, it is straightforward
to show that at fixed B

[0(;H'B)/AN 1.y ,= 2V %li w
1., du /
9 2Hp8p‘ oN T,V,a
2, ¥ /) JED
ZVB 3p? +2VH ap |
. /aV sz%ﬂ (51)
T,N,a a

Thus, as required, both the right- and left-hand sides of
Eq. (47) reduce to the same function, i.e.,
(1/2V)B?pd*(1/u)/3p®. This completes the proof that
Eq. (44) holds at fixed B. Note that subscripts T, V,a and
T,N,a were dropped from the derivatives of u since p is a
function of p and T, and the meaning of du /3dp should be
construed henceforth as being evaluated at fixed T.

2. Fixed H

In this case we identify P as Py, y and Eas $n,y- Com-
bining Egs. (20), (21), and (44) gives

1

1 d
——H-B+-—H%p£ /
3|P—- yHrg | /N -
- 1200
=3 |E+—-H aV (52)
2 dp TN«
In this case Eq. (48) holds. Furthermore,
1H. = 2__&
[8(zH'B)/dN]1,y,,= 2VH 3 (53)
3 /aN
T,V,a
2
LHZ_a&_ 2 9 (54)

C2rT g 2 P
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lng.Ei =___H2 _E

9 2V paz'

/ 14 (55)
It is seen that both sides of Eq.

—(1/2V)H*pd*u/9p?, as required.

Thus Eq. (44) is valid, irrespective of which of the two
field constraints is selected, i.e., fixed B or fixed H. In
what follows we present detailed analysis of specific sys-
tems under different constraints. This facilitates direct
evaluation of thermodynamic variables and subsequently,
their comparison with the theory presented in the previ-
ous [1] and present work.

As already mentioned, further details on the extended
scope of Maxwell relations derivable from Eq. (10), and
Legendre transformation of its field terms, are given in
Appendix A. This extended scope and the attendant
Legendre transformation are shown to include, and agree
with, known Maxwell relations that are used to describe
phenomena such as the magnetocatoric effect.

T,N,a

(52) reduce to

III. ANALYSIS OF SPECIFIC SYSTEMS

The systems studied in the following examples are
characterized as being rigid with respect to the magnet-
ized space; i.e., they are confined within fixed boundaries.
A nonrigid system with a variable magnetized space is
considered later as part of the Appendixes. First we con-
sider rigid systems that are constrained to carry fixed flux
and are characterized by a uniform B. This is followed
by imposing a constraint of uniform H.

A. Uniform field B

Consider the systems shown in Fig. 1. In Fig. 1(a), the
geometry is cylindrical, whereas in Fig. 1(b) it is rec-
tangular. In Fig. 1(a) the system is defined within the
boundaries of a cylinder of radius R and length L.  In
Fig. 1(b) the system is defined within the boundaries of
the gap. The dimensions of this gap in the x, y, and z
directions are L, /, and /' where z is perpendicular to the
xy plane. Note that the z axis and the /' dimension are
not shown in Fig. 1(b). The cylinder is energized by a
solenoid that is wound around it, whereas the magnetic
flux in the gap originates from a coil set on the left leg of
the yoke. The cylinder is long and the gap is narrow to
the extent that end effects can be neglected. The volume
V in both systems is set fixed. Furthermore, in Fig. 1(a) L
and hence also R are fixed, while in Fig. 1(b) L, /, and
hence also /' are fixed. Each system consists of two sub-
systems, which are denoted by 1 and 2 and henceforth the
subscript i (i =1,2) denotes the ith subsystem.

In Fig. 1(a), subsystem 1 consists of a relatively thin
section of the whole cylinder while subsystem 2 consists
of the rest of the system. Both subsystems have the same
radius and cross-sectional area A4 that is set perpendicu-
lar to their common axis. The respective volumes are
Vi=Ax and V,= A(L —x) subject to the condition
x <<R. In Fig. 1(b) the planar boundary between subsys-
tems 1 and 2 is set at a distance x from the lower planar
face of the yoke, which is also the x =0 boundary of the
system.
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Note that in Figs. 1(a) and 1(b), the only variable coor-
dinate is x, and it is assumed that the permeability of the
yoke as well as that of the material outside the cylinder
are practically infinite. In both systems boundary condi-
tions dictate that the field B be uniform across the whole
system. The analysis presented in what follows applies
equally well to both systems and this is the reason for
bringing them up together in the first place. Therefore,
in what follows, the term ‘“‘system” serves to indicate
both systems. The practically infinite permeability of the
yoke material [Fig. 1(b)] and also of the surroundings of
the cylinder [marked as phase 3 in Fig. 1(a)] guarantees
that the magnetic energy is confined solely to the system.
This simplifies the analysis considerably.

The effective (weighted average) permeability p of the
system is given by

L_:_x__'_L;x , (56)
I 231 22}
du=—2/L){(1 /p—1/py)dx —(x /ub)du,

—[(L —x)/u3ldu,} . (57)

This variable is defined so that the magnetic energy
stored in the gap is the same, had the gap been made of a
uniformly permeable matter, e.g., at the value of .

The magnetic energy, Uy = Uy, of the system is given
by Eq. (23). Note that here the symbol U,, is used so as
to clearly distinguish the case of a magnetic field from the
general case of fields, which is denoted by U iz

3
j= L >
Q0000000000000 0000000000000000000

\ NN A
\ [

|

2 [

/

/ 7/

BRIPARAIRARARIAIAIRVIIORAOIRIRRRRIOR®
—> x|

3
(a)

I |
) |
/ / R

i

o> | 3
iq P I
g D i
4\7 2 L
\7 T b3
q__ | T $ Ya
o— D 3

(b)

FIG. 1. Magnetic field system at fixed field B. (a) Cylindrical
geometry; (b) rectangular geometry.
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Differentiating Eq. (23), at fixed B, and combining the
result with Eq. (57) gives

dUpp=1AB*{(1/u;—1/u,y)dx —(x /uddp,
—[(L —x)/u3)du,} , (58)

where subscript B denotes that B is fixed. At fixed tem-
perature the permeability pu(p, T') is a function of the den-
sity p. This can be expressed as

wlp, T =const)=K (plp+u, , (59)

where u, is permeability of free space. If K(p)=K is
fixed then,

w(p, T =const)=Kp+pu,, (60)

whereas if the Clausius Mossotti model of magnetostric-
tion can be applied then [1]

3ok
K(p)=—7+—
(p) —K.p’ (61)
3ok
= = e—— -+
wu(p, T =const) I“Klpp Ko » (62)

where K| denotes a constant. Suppose the material in
each subsystem satisfies Eq. (60). In this case it can readi-
ly be shown that

K N,
dp,= A% dN, > dx |, (63)
_ K N,
dﬁLz" A (L __x) dpJ2"+ L‘——x dx (64)

Combining Egs. (58), (60), (63), and (64), at fixed total
mass, i.e., d (N;+N,)=0, gives

1 11 1,1
dUpyp=+ AB*! | ——— | [2—p, |—+— | |dx
) T e

- KL Law, (65)
4 |\p1 p3
Hence

(8Uy 5/3x)y =+ 4B? |-L -1 2—u L

M.B N 1231 2 0 M1
+-L ], (66)

%)

(3U, 5 /0N, ), =—+p2 |0 _F2fo | o (o)

2 PiM Pl

where here use was made of Eq. (60) in the form
w;=Kp;+py i =1,2. The physical meaning of the par-
tial derivatives, given by Eqgs. (66) and (67) is that they
provide the difference of force and chemical potential, ex-
isting across the boundary between subsystems 1 and 2,
respectively. The difference in the magnetic pressure
across this boundary is readily obtained by manipulating
Eq. (66) as



_ 1 |%Uup

A ox
=(iuoH:—H;B))
—(luoH3 —H,B,) , (68)

(P y, —P)—(Pyy, —P)= N
1

where here use was made of

B,=uH;, i=1,2. (69)

For materials that satisfy Eq. (60), Eq. (18) takes the fol-
lowing form [1]

Py y—P=1u,H*~HB . (70)

Thus Eq. (68) agrees with Eq. (70) when the latter is ap-
plied to subsystems 1 and 2. Equation (66) shows that
—(QUpp/0x)y >0 if py>po, pyZpo, and py>p,.
Hence under this condition the magnetic force tends to
increase x. Equation (67) can readily be manipulated to
give

(Ep,v,—5)— (v, —§)=(3Uy g/0N,),

1
Z_Ep—l#oMl'Hl
|-k M,-H (71)
2p2.“0 2’ Ha |-
In this way the variable {g ,, —§ can be defined as
1 .
gB,V,,—gz_E—#o(M'H)n i=1,2. (72)

1

Equation (19) takes the form of Eq. (72) when the former
is applied to the ith subsystem that satisfies Eq. (60).
Hence the pressure and chemical potential as given by
Egs. (18) and (19) agree with the ones evaluated in this
specific example.

In the system shown in Fig. 1, the constraint of uni-
form B is a consequence of the boundary conditions as set
by the geometry of subsystems 1 and 2. This implies that
B is fixed in space; i.e., it is position independent. The
condition that B is also made independent of the permea-
bility, i.e., by adjusting the current source, fixes its value
in both space and time. Under this condition no magnet-
ic energy is exchanged between the system and the
current source of its field. However, this constraint is not
the only one that can be imposed on the system. For ex-
ample, at the same boundary conditions that impose a

J

N
dUM1=%V1H1 —%(21(2#)“2” (l/ul—l/pz)dx—(x/,u%)—f—x dN, ——Lax

-2 N T S

[(L x)/,uz]A(L_x) dN,+——dx H, e dN, o dx

+%,u1H%Adx ,
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uniform B the system can be constrained to have a fixed
magnetic energy. In this case

UM=-;—VMH2=%VB%L=K'2 , (73)
where K is a constant and U,, is the magnetic energy of
the whole system. In Eq. (73), u is the permeability of the

system as given by Eq. (56) and H is given by
H=[xH,+(L —x)H,]/L=02K,/u)""?, K,=K,/V .
(74)

Note that H is defined as the total ampere turns per unit
width L of the gap; see Fig. 1(b).

The first part of Eq. (74) is a consequence of Ampere’s
Law and the second comes from Eq. (73). Differentiation
of Eq. (74) in conjunction with Eqgs. (56) and (57) gives

1

dH =E(2K2y)1/2{( 1/uy—1/uy)dx —(x /ud)dpu,

—[(L —x)/u3ldu,} . (75)

The corresponding change in B is readily obtained using
Eq. (73) as

dB =1Hdu=—updH , (76)

where H and dH are given by Egs. (74) and (75), respec-
tively. Note that dB is subject to B being uniform across
the whole system. In what follows we evaluate the
change of magnetic energy, U,,,, of subsystem 1. The re-
sult will then be used to evaluate related thermodynamic
variables. The change in U, consists of two parts,
which we denote as a change in Uy, and U,;. In the
first part the change dU,,; is due to changes in system
variables, i.e., dx and dN;, whereas in the second, i.e.,
dU,y,, the change, dB, is imposed by the current source
so as to satisfy the constraint of fixed U,,. Thus

dUy; =dUy, +dUy, (77)
AUy =i HidV,— 1V, Hidp, , (78)
dUy, =V H,dB=1V H Hdu, (79)
where here use was made of Eq. (76).
Combining Egs. (77)—(79) gives
dUy =1V \H(Hdp—H dp,)+p,HidV, .  (80)

Combining Egs. (63), (64), (75), (76), and (80) gives

(81)
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where in Eq. (80) use was made of dV | = Adx.
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We are now in a position to define the pressure and chemical potential of the material in subsystem 1 as follows:

PB,NI(UMzconSt)=_%(BUMI/BX)NI,UM , (82)
(8Us1 /%)y, 0, =5 ViH | =7 2K opn) a1/t = /) 2ol 1/ 1 /)]

+£1;1—(H1_.u0) +%N1H%A ’ (83)
§B,V1(UM=c0nst)=(8UM|/aN1 )X’UM , (84)
(OUp1 /N )0, = ViHy | 55 2Kopn) 1 /= /g = H (11 =) /N | (85)

where here use was made of dN; +dN,=0and V= AL.

Note that the subscript B in Eqgs. (82) and (84) indicates
the uniformity of B and not that it is fixed in magnitude.
The total magnetic energy of the system comprises the
energies of the two subsystems,

Uy =Upit Uy, - (86)
By virtue of U,, being fixed
dUMlz—dUMZ . (87)

Hence using the fact that N is fixed and hence
dN,= —dN,, we find that

&p,v,(Uy =const)=Cp y (Uy =const) . (88)

The same relation holds for the pressure. Thus under
the constraint of fixed N and fixed U,, there is no mag-
netic drive for mass transfer between the two subsystems
that originates from differences in (p y (Up =const),
i=1,2.

Equations (83)~(85) and (88) show that because U,, is
held fixed, the pressure and chemical potential of the
matter in subsystems 1 and 2 become functions of vari-
ables that pertain to both subsystems, as well as to the
whole system. In particular they depend on the dimen-
sions of the subsystems. If we focus on subsystem 1 and
consider subsystem 2 to be its environment, then the
above results verify the dependence of thermodynamic
variables of subsystem 1 on this environment. This is a
unique property of thermodynamics in the presence of
fields. Consider the following two cases.

In the first case u;,—u,, and hence the magnetic chem-
ical potential takes the following familiar form:

&8,y (Upyy=const)=—1V Hi(u;— o) /N,

1

2

_ b
2py

= KH?= H M, . (89

In the second case p;—p,. This gives

|4
§g,V1( U, =const)= %%KHHLU,Z[I/‘LL(Z)_ 1/u?) . (90

[

Note the superscripts a and 3 denote the first and second
cases, respectively.

Equations (89) and (90) show that the magnetic chemi-
cal potential is a function of the variables pertaining to
both subsystems and it is only when their permeabilities
are the same that the chemical potential appears to de-
pend on variables of one subsystem.

Hitherto we have considered materials that satisfy Eq.
(60). Using the same analysis that led to Egs. (68) and
(71), it can readily be shown that for materials that satisfy
Egs. (59), (61), and (62), the magnetic pressure and chemi-
cal potential can be presented as

Phy, = =5 (HB),—L2(HM), /(1=K p)), =12,
o1

, Ho .

Co,y,= =5 ~(MH),/(1=Kyp)), i=1,2. 92)

1

Equations (91) and (92) agree with the magnetic terms of
Egs. (18) and (19) when the latter are subject to Eq. (62).

B. Uniform field H

Figure 2 shows two systems in which the boundary
conditions between their subsystems facilitate the condi-
tion of uniform H. In Fig. 2(a) the system consists of two
concentric cylinders having the same length L. The inner
cylinder is designated as subsystem 1 and the annular re-
gion extending from its surface to the outer cylinder is
marked subsystem 2. The radii of the cylinders are R,
and R, and their cross-sectional areas are 4, and 4,, re-
spectively. The system is long enough, i.e., L >>R,, so
that end effects can be neglected. A solenoid wound
around the system produces a steady uniform field H.
The permeability of the material in region 3 surrounding
the system is practically infinite.

In Fig. 2(b) the gap opened in the yoke is defined as the
system. The length of this gap is L, its thickness is /, and
the width in the z direction (not shown) is /’. The dimen-
sions L and !’ are large compared to / so that end effects
can be neglected.
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The yoke, which has practically infinite permeability, is
energized by a coil wound around its left leg. The boun-
daries between subsystems 1 and 2 are set parallel to the y
axis, i.e., perpendicular to the boundaries of the gap. In
this way the field H within the gap must be parallel to
these boundaries. Subsystem 2 extends from the boun-
daries of subsystem 1 at (0,x) up to the edges of the gap
so that its length is L —x. In what follows the “system”
refers equally well to that depicted either in Fig. 2(a) or in
Fig. 2(b). In this case, the effective (weighted average)
permeability p of the system is given by

u=iV(V”u1+ Vay) (93)
where the volume V is fixed:

V=V,+V,. (94)
Hence

Vdu=Vdu,+(V =V )du,+(u,—uy)dv, . (95)

At fixed temperature,

dp;=alp;)dp;, =12, (96)

where alp;)=K, when Eq. (60) applies and
alp;)=K (p;)/(1—Kp;), when Egs. (59), (61), and (62)
prevail.
If Eq. (60) applies then
du,=(K/V NdN,—pdV,}, 97

3
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FIG. 2. Magnetic field system at fixed field H. (a) Cylindrical
geometry; (b) rectangular geometry.
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d[lz::(}zv/plz)(dﬁVz'“/)zdI’z)
=—(K/V,)dN,—p,dV,) . (98)

Combining Egs. (95), (97), and (98) gives
Vdu=K (dN,+dN,)+(—Kp,+Kp,+pu,—u,)dv, . (99)

The first and second terms on the right-hand side of Eq.
(99) vanish due to the fact that N =N, +N, is fixed and
Kp;,=up;—pg, i =1,2. Thus at fixed V, N, and H, the
magnetic energy (3 VuH 2) of a system that satisfies Eq.
(60) is fixed with respect to changes in ¥; or N,. This
shows (as indeed is verified below) that both the pressure
and chemical potential must be uniform across the sys-
tem. The magnetic energy of the ith subsystem is given
by

Uy =3V:Hu;, H;=H, i=12. (100)
Hence the corresponding magnetic chemical potential
can be obtained as

1

gi-I[,Vi:(aUMi/aNi)Vi:EKH?:

Ko
2p;

1

M;-H; . (101)
Equation (101) is in agreement with the magnetic term of
Eq. (21) when it is subject to Eq. (60). The chemical po-
tential, as defined by Eq. (101), is the same in both subsys-
tems. Similarly the magnetic pressure is obtained as
" 1

Pin =—@Uy; /3V,)y = _E“OH"Z’ H,=H. (102)
Equation (102), which is in agreement with the magnetic
terms of Eq. (20), verifies that the magnetic pressure is
also uniform across the system when it satisfies Eq. (60).
If Eqgs. (59), (61), and (62) prevail, then the counterparts
of Egs. (101) and (102) become

’" 1 2 HO .
=—a'(p, ) H}*=—>M,-H, /(1—K,p,;), i=1,2,
é‘H,V‘. Za(pz) i 2’0’ i 1/( lpl) l
(103)
P;;,Nl_=—%Hi-Bi+%Mi-H,/(1—K1pi>, i=1,2,
(104)

where a'(p;)=3u.K , /[p;(1—K p;)*].

Equations (103) and (104) are in agreement with the
magnetic terms in Egs. (21) and (20) when the latter are
subject to Eq. (62). Equations (103) and (104) show that
for systems that obey the Clausius Mossotti law, neither
the chemical potential nor the pressure is expected to be
the same in subsystems 1 and 2. As a'(p;) is inversely
proportional to (1—K,p;)?%, §ﬁ,Vi is an increasing func-

tion of p;. This suggests the existence of a magnetic driv-
ing force for mass transfer from the denser subsystem to
that of the lower density. Manipulating Eq. (104) in con-
junction with Eq. (62) gives

Py, = —SuoH? +tpuoM?, =12 .

Comparing Egs. (102) and (105) shows that under the

(105)
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Clausius Mossotti law, the pressure depends on the mag-
netization of the material through the term lu,M?. In
this case the magnetic pressure increases with density,
and there is a net jump in this pressure which amounts to
Iu(Mi—M 2), i.e., when the boundary from subsystem 2
to 1 is crossed.

IV. DISCRETE SYSTEMS

Equations (10)-(13) hold for continua, as well as for
discrete systems. In the case of a continuum the energy
U, due to the field can be ascribed solely to the space
within the boundaries of the system. However, in the
general case of discrete systems U '+ consists of energy
that is stored inside as well as outside the system. The
implication of this split energy storage is examined next
for the illustrative case of a single isotropic sphere in a
uniform magnetic field.

A. Sphere in uniform magnetic field

1. Energy and thermodynamic permeability

Consider a sphere of radius R that is placed in a uni-
form field Hyi, where i, is the unit vector in the z direc-
tion; see Fig. 3. A spherical coordinate system (r,0,¢) is
placed with its origin at the center of the sphere and the
axis 6=0 coinciding with the z axis. The triplet (r,8,¢)
has the corresponding triplet unit vectors (i,,igi,). In

this coordinate system
|

3uH,
——1i,, ¥<R
pt2p, ¢
H= 2R | 1Ty R3
Hy |1+ 3 |05 | |cosbi,— 1——3*
r B1t 20y r

Hence, assuming that all materials involved are linear,
the following energies can be defined relative to those
prevailing in the absence of the sphere:

2

1 3, 1
UM1=3V1.“1 1+ 241, H(Z)—EVlﬂzH(z) »  (109)
1 1
UM2=5y2fV2H2dV2+EV1,u2H6 . (110)

Note that Egs. (109) and (110) are structured with a view
to satisfy the convention [1] that, in the absence of the
sphere or when pu,=p,, U, vanishes and the energy in
V', pertains to the source of the field, and not to the space

occupied by the sphere. Solution of the integral on the
J
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FIG. 3. Details of a sphere in a uniform field. The sphere is
defined as subsystem 1 and the rest of the gap as subsystem 2.

i, =i,cos6—igsin6 . (106)

Note that variables pertaining to the sphere and to its
surroundings are marked by subscripts 1 and 2, respec-
tively. In what follows we evaluate the magnetic energy
stored in the sphere and its surroundings and then use the
result to evaluate relevant thermodynamic variables.

The field within and outside the sphere is given by [4]

(107)

(108)

sinfig ], r>R .

[
right-hand side of Eq. (110) gives

Hi™Hy
Myt 20,

2
H3+ 1 Viu,H3 .

1
Up= 2 Vz.qu(Z) + Vi, 2

(111)

The first term on the right-hand side of Eq. (111) is the
energy stored outside the boundaries of the sphere due to
the source of the uniform field, while the second term
gives the energy stored there due to the sphere. Thus the
energy stored outside the sphere due to its own material
is proportional to its volume. The total magnetic energy
that is stored in the sphere and its surroundings is ob-
tained as

1 1 2uy | Pl 3p, )
Uy =Upy+ Upy=—Vu,Hi+ =V, | — —— |H?
M M2 M1~ 5 Vi 5 V1 | t+2m, 1+ 20, 1 0
1 ,, 1 Ky | H1—H
=—Vu,H{+—V — | ——— |H}?,
y VE 0T Vi i | 2, 0 (112)
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where V=V ,;+V, and the second term on the right-
hand side of Eq. (112) stands for the overall net effect of
the sphere. Combining Eqgs. (107) and (112) gives

Uy=3Vu,Hi+ 1V \u,H} , (113)

2py/py)+11} (114)

where p is defined as the effective “thermodynamic’ per-
meability that would have given the same overall net en-
ergy due to the sphere, had its own field been uniform
and confined to the region within its boundaries only, at
the level of the field H, prevailing there. In this sense, u;
(which is a transformation of u,) can be considered an or-
dinary thermodynamic variable of the sphere system.
This is due to the fact that p facilitates the use of a mod-
el where the overall field due to the sphere is considered
as being effectively confined within its boundaries. In or-
der to define other thermodynamic variables of the
sphere it is necessary to evaluate partial derivatives of its
overall net energy (U, ), which according to Eq. (113) is
defined by

UJ,WI :%VIILLSH% .

ps =i {51y /1) —

(115)

In what follows, we define thermodynamic variables of
the sphere at fixed 7T, N, and V and either fixed B, or
fixed H;. This means that all changes of volume and
mass are done under the field Hy and internal to ¥ and no
exchange of mass or volume with regions outside ¥ can
occur.

2. Thermodynamic variables under different constraints

a. Fixed B;, T, N, and V. Combining Eqgs. (114), (115),
and (69) for i =1 gives

Uy =1V,Bi/u. , (116)
2

l,zl -1———%2-+L , (117)

pe 9 (K2 pi M

where here pu; is defined as the effective “thermodynam-
ic”” permeability for the energy formulation in terms of
B;. Notice that unlike the case of a continuum, here

BTl

Thus at fixed B,
1B )

AU =L av, + Ly B2, (118)
2y 2

d(1/u,)=- L2 lau,+ 21 du
-3 Ty Y 2 ) 1 ’
9 u o pi T

(119)

where here dV |, =4mr’dr is constrained to be a spherical
shell. For linear materials

(120)
(121)

wi=np;, T;), =12,
d,u.,=(a,u.,-/ap,-)Tidpi-f—(af.ti/aT,-)pidTi, 121,2 .

At fixed temperature T; =T,
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dy,-=%(8,u,~/ap,)Ti(dN,~ —p;avy), i=12. (122)
Combining Egs. (118), (119), and (122) and using

dV,=—dV, and dN,=—dN, gives dU,,, in terms of
pressure and chemical potential as
dU]IMI :—PBI,N‘dV1+§B1,V‘dN1 Py (123)
where
— 9 Vi o,
__BZ Z <
Py N, 18 °1 w v, ay 3p, TPz
9
— B ) P> (124)
Iy |7
1 L, I, oy
=—Bi|= S - , 125)
SB,,v, 18717, a ¥, |, ' 3p, , (
1,2 4 1
=+, B=—F5 —— .
Hy MY i %
Consider the two following extreme cases. In the first
one, p;—p,; M;—i, and hence 1/u;—0 and
(0u,/8p,)y—(0u,/3p,)y. This and the fact that

V,/V,<<1, and hence related terms can be neglected,
gives

9
Py oV T éH ‘a%% , Hi—Hs
(126)
H,—-H, V,/V,<<1,
15| %
Sp,v, = 6 ¥, |, H1—H
(127)
H,—H, V,/V,<<1.

Using the first term on the right-hand side of Eq. (113), it
is straightforward to show that for matter that is uni-
formly distributed in V at a fixed and uniform H,, one ob-
tains

1,1 3
Py v = u:H3+ 3 Hip iap I (128)
__1_ 2| du
nyy =31 | B | (129)

where the subscripts 2 in the derivatives were dropped,
due to the fact that V, rather than V,, is involved and
here (du,/9p,)r=(08u,/8p,)7=(3u/dp)y. Equations
(128) and (129) are in agreement with the magnetic terms
in Egs. (20) and (21), respectively. It is seen that holding
B, fixed within the sphere affects only its own thermo-
dynamic variables but not the ones pertaining to the
source of the uniform field, as indeed should be the case.
Comparison of Egs. (127) and (129) shows that if
Ou/0p;=0u/dp and the sphere consists of the same
matter that surrounds it uniformly but at slightly
different density, then ngVl <§H0’V is expected. This

suggests that, magnetically, there is a force driving
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matter into the sphere when the latter is held at fixed B;.

In the second case pu;—c and pu, is finite. Here,
1/u,=1/09u,), a;=1/u3, B;=0, and hence recalling
that V', /V, <<1, Egs. (124) and (125) reduce to

Py v, = —%mHj, py—w, Vi/V,<<1, (130
Cs, v, =0, py—o, Vi/V,<<1. (131)
J
1 Vl 8[1«2 a,LLl
dUl,,=—H? |9y, — —a' | — g
T (2] V2a1 3p, TPz By 3p, TP1

ai=pi/us+2, Bi=2u/ut1 .

Consider, once again, the following two extreme cases.
In the first one p;—p,, 1t;—H,, and hence u,—0. Fur-
thermore, in the limit a}=3 and B;=3. Recalling that
V,/V, <<1, this gives

oy

9p;

dav, +%H%

Oy

Ip;

, —1
dUyp =TH%.DI dn, .

T T

(133)

Thus, the same pressure and chemical potential [compare
to Egs. (126) and (127)] is obtained under this extreme
condition, irrespective of B; or H, being fixed.

In the second case where p;— o and pu, is finite, the
result, i.e, dUj =1u,H}dV, and the corresponding
pressure, is identical with that of Eq. (130). Note that
here [see Eq. (107)], the fixed level of H, must be H;—0.
Similar to the case of fixed B, the difference in chemical
potential for the same material when it is within or [see
Eq. (129)] outside the sphere suggests its tendency to con-
centrate in the sphere.

Comparing Egs. (127) and (129) at pu,=u,=u,
p1=p,=p, and H;=H, shows that the latter gives a re-
sult that is larger by a factor of 3. This seems to be a
discrepancy. However, the two equations are subject to
different constraints regarding the way matter is accumu-
lated. In Eq. (127) matter can accumulate only in a
spherical space of volume ¥V, whereas in Eq. (129) it
must be dispersed uniformly in V¥, outside this sphere. In
the absence of restoring dispersive forces, this difference
in chemical potential is another manifestation of the sys-
tem being magnetically unstable and of its tendency to
form, or else collapse into, denser regions. In the above
example, the denser region happens to be a sphere. How-
ever, as is well known, it does not provide the lowest pos-
sible state of energy that is attained rather in elongated
needle like forms that are uniformly dispersed and
aligned with the field.

Hitherto we have imposed constraints that are charac-
terized by holding either B, or H, fixed simultaneous
with the overall condition that H,, N, and V are invari-
able. These constraints, which are imposed only on the
field within the sphere, can be realized by superimposing
a hypothetical current source in the form of a flux ball on

dv,+—H?
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Thus, at pt;— o0 and u, finite, the magnetic chemical po-
tential of matter within the sphere vanishes, and hence
the force driving matter into the sphere increases as com-
pared to the case where u, is finite. In what follows the
constraint of fixed B, is replaced by that of fixed H;.

b. Fixed H,, T, N, and V. Differentiating Eq. (115)
and combining the result with Eq. (122) gives

oL,

9p,

1 du,

9,

1 ’ ’
72611 +Bi

18 .

f

the sphere. The field H, of such a flux ball is given by [5]

?né—(i,cose—igsinG), r<R
ni |R | . .
R |7 (i,2cosO+igsinf), r>R ,

where ni are ampere turns.
The conditions set on H, by the constraints can be
summarized as follows:
3u
H,=H,—————
Myt 2p,

where at fixed B,

Hyi,, r<R, (135)

H|=B,/u,
and at fixed H,,
H|=H, .

The adjustment of H,, i.e., according to Eq. (134), is via
the current i at fixed number of turns n. This in turn pro-
duces the field outside the flux ball as per Eq. (134). Thus
the resultant field outside the sphere is the sum of the
contributions from the sphere [Eq. (108)] and the flux ball
[Eq. (134)]. This resultant field varies as u, is changed,
thus producing a change in the flux linkage with the
current source of the H;, field. Therefore, the latter must
exchange energy (however small) with the sphere. At
fixed B, the flux passing through the sphere is fixed; there
is no energy exchange between the sphere and the flux
ball, but there is such an exchange with the current
source of H,. At fixed H,, the sphere exchanges energy
with both current sources, the primary exchange being
with the flux ball and the minor one with the current
source of H,. It follows that the constraint of fixed flux
through the current source of H, can be fundamentally
different from the constraints imposed only on the
sphere. In what follows we consider the implications of
this constraint, which allows no energy exchange between
the sphere and the current sources of H, As p, is
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changed, this constraint can be satisfied by adjusting H,,
V|, or u,, so as to maintain the energy U,, fixed.

Using Eq. (112) this condition can be expressed as fol-
lows:

(aUM/aﬂl)Vl’“zyHOd‘ul+(aUM/a‘uz)yl’#lyHOdl.Lz‘f_(aUM/aVl )‘ul’p“l’HOdVl +(aUM/aH0)

For example, at fixed u, and V¥ it can readily be shown that

2

H} 3 H
dy=—3 Mo |k o] Ho
4 Uy |mt+2p, 1 |r 12Uy,
and hence
1 A, Up
dUj, =—H?|— 1— )
M1~ g : |, U, dN, (139)

Equation (139) facilitates the definition of the following
magnetic chemical potential:

Iy
Ip,

 Upn
Uy

1
§UM,V1=€H%

(140)

T

Comparing Egs. (127) and (140) shows that replacing the
constraint of fixed B; with fixed U,, decreases the mag-
netic chemical potential by a factor of 1— U, /U,,. At
py— o, H;—0and ;UM, v, vanishes, as expected.

It is clear from Eq. (137) that there are three combina-
tions of pairs of variables that can be constrained while
pq and the remaining unconstrained variable are allowed
to change. Although we have chosen to show one such
possibility, the option to choose another indicates the ex-
istence of two additional forms of related magnetic chem-
ical potential. It follows that in discrete systems such as
the sphere, the number of forms that the magnetic chemi-
cal potential can assume is expected to be larger than
those that can be defined for corresponding cases of con-
tinua. We digress briefly to consider the significance of
volume of subsystem 1 with respect to that of the sphere.

c. Significance of volume enclosing the sphere. In pre-
vious cases the volume V| of subsystem 1 was identified
as that of the sphere. However, as pointed out elsewhere
[1], ¥, need not be the same volume V,, of the magnetiz-
able matter. If V| coincides with V,,, then identical
changes must occur in both. However, if this constraint
is lifted then V| and V,, become independent. Note that
henceforth properties that pertain to isotropic magnetic
matter Jare denoted by subscript M. Figure 4 shows the
same sﬁrstem that is depicted in Fig. 3 with the exception
that the volume ¥, of the sphere is part of V.

In the system of Fig. 3, any change in mass of the
sphere at fixed volume V=V, or a change in its volume
at fixed mass N,;, must result in a change in the corre-
sponding density p;=p,,, and permeability u,=p,,. In
Fig. 4, p, is a function of p,, as well as of p,.
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1 Vi i~
—Vu, |1+ ——F— |H3=U, = .
5 Vi V uton, |Ho=Un const (136)
Hence, recalling that Vis fixed,
Vlﬂ“l”"'deO:O . (137)
9
2 | S dnN, (138)
apl T
[
P1=¢mpyt(1—=dp)p, ,
(141)

¢m=Vu/Vi, Ny=puVuy -

It follows that subject to Eq. (141), p,,, and hence also
Ky, can be held fixed as V), (or alternatively N,,) is
varied at fixed V; and vice versa. Now we seek to find
the form of the magnetic chemical potential for the case
in which B,, and p,, are kept fixed while simultaneously
maintaining the condition that temperature and the
overall mass N and volume V of the system are invari-
able. The condition of fixed B,, and u,, (which follows
from holding p,, fixed) imposes also a fixed H,,. Thus
the result at fixed H;, and p,;, must be identical with the
one at fixed By, and p,,. Next, the magnetic chemical
potential is evaluated under these constraints.

d. Fixed By, and p,, or Hy, and p,,. In this case the
induction and density of the sphere are kept fixed but
they are variable within V,. Here the energy U, is

[Pa L |
I i
Hg
— -
D _
7 Vam > N, Py §
H() Pa-ty Hy
14
H3—>co vy, N, @ dVy, dNy H3—oco ¢
Hy
—
d ViNp.py k
D, N
-
Lz
2R<<L<<¢

FIG. 4. Details of a sphere contained in subsystem 1 that is
part of a system in a uniform field.
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given by

Usi :%VMBgJ/,U}u >

(142)
11
py 9
Equation (142) agrees with the convention that the mag-
netic field pertains to its source. Since the only source of
field within ¥V is the sphere, it is also the sole contributor
to Uyy: Once again p), accounts for the field inside as
well as outside the sphere including the space outside V),
and ¥V, i.e., the one in ¥V —V,,. In this respect, the
choice of ¥V, has no effect on Uy, apart from the fact
that it must facilitate the constraints set here. At fixed
temperature ,, is a sole function of p,, [see Eq. (120)],
and hence it is also fixed. Furthermore, using the fact
that V' >>V¥,,, u, can be considered effectively invariable
as a differential amount of mass and volume are ex-
changed between the sphere and the rest of the system.
This means that, effectively, u}, is also invariable. It fol-
lows that V,, or alternatively N,, are the only possible
magnetic variables in Eq. (142) that are not fixed:

2
1 .“f2+1

By pi Mu

dVy=dNy /py » (143)
B} B}

AU =22y, =L M N, (144)
2 py 2Pm py

Equatidn (144) facilitates the definition of the following
magnetic chemical potential:

1 B

Byory  2PM Wy

B,y (145)

The partial derivative in Eq. (145) is not marked with a
subscript ¥ along side B,,,py,, since Uy, is not a func-
tion of V. This is a fundamental difference as compared
to ordinary, field free, thermodynamics where a fixed V,
must be imposed when evaluating the chemical potential.
This is also the reason for not including subscripts that
denote uniformly dispersed masses that contribute to u,
but not to u,,, since the overall mass and u, are fixed and
their field is due to the current sources of H,. Hence, if
they exist, they contribute nothing to dU,,;. Note that
although the sphere (which is maintained at fixed B,, and
Uy ) decreases the energy in the space it progressively oc-
cupies as it expands (assuming that p,, > u,), it increases
simultaneously its own energy, which is stored outside its
boundaries. The net result is reflected in the positive
chemical potential of the material within the sphere.
Equation (145) has the same form that was obtained else-
where for the case of a continuum at fixed induction B,
density p, and permeability u. This chemical potential,
i.e., {p ,» Was defined as [1]
1 B?

SB,u 2 (146)
Equation (145) suggests that if the effective “thermo-
dynamic” permeability of an isotropic discrete system is
found, then provided that it is uniformly magnetized, it
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behaves essentially as if it were a continuum. In Eq. (145)
this effective permeability is ).

The constraint of fixed H, throughout the system
means that changes in volume or mass of the sphere are
carried out under a constant external field H,. If this
constraint is lifted, then exchange of mass between the
system and its surroundings, where the field is not uni-
form, becomes possible. In what follows, we consider the
process of introducing a sphere into the system from an
initial position outside the field, i.e., where its intensity
vanishes. Such position is taken as ““infinity.”” The mag-
netic work done on this sphere as it approaches the sys-
tem consists of contributions from the field and the
current source. As shown elsewhere [1], at fixed H, and
when the mass is spread uniformly in the system, this
work is split between the one delivered to a mechanical
work source that balances the magnetic pull quasistati-
cally, and the one needed to magnetize the matter as it
progressively enters regions of higher field intensity. At
fixed flux linkage, no energy exchange between the sphere
and the current source can occur. Hence, in this case the
only work delivered is by the existing field. It follows
that, at fixed H and variable flux, additional energy is
delivered by the current sources in magnetizing the
sphere. Thus the decrease in the energy of the field is due
to the work delivered to the mechanical source, whereas
the buildup of the energy stored in this field is due to the
current sources. The work delivered, in a quasistatic pro-
cess, by the field to the work source, at fixed flux, can be
evaluated as follows. Assuming that p, prevails outside
the sphere and the variation of the field gradient across
its volume can be neglected, the force acting on it is given
by

Fp =poVyM-VH, , (147)

_ _ 3,
oM = (pyr —po)H; = (1 _/J’O):L—He >

(148)
M t2u,

where H, =H,(1,1?) is the “unperturbed” field (i.e., in the
absence of the sphere) at the position r and time ¢ and
H;=H,(r,?) is the corresponding field inside the sphere.
The condition of fixed flux means that both H, and H,
must change as the sphere changes its position outside
the system. These changes are due to the adjustment of
the current source so as to maintain the flux linkage
fixed. However, the geometry of the field set by the
current source is invariable. Thus as the sphere is intro-
duced into the field, only its intensity changes while its
shape remains the same. At ¢ =0 when the sphere is out-
side the field, the current source produces the field
H,,=H,(r,0) and at ¢ >0, it changes to H,(r,?). Thus it
is H,, that provides the time invariable geometry of the
field. Using the fact that H, /H,, is independent of posi-
tion, Eq. (147) can be expressed in terms of H,, as fol-
lows:

2

3
Fa VHZ , (149)

Byt 2,

e

HeO

1
Fy= 2 V(s — o)

where (H,/H,,)* accounts for the effect of the variable
current.
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Hence the differential mechanical work (dW,)
delivered by the field to a mechanical work source, as the
position of the sphere is changed by dr, holding A fixed,
is

2
AW, =L vy —F2 | e (150)
AT M\Hp— Ho i 20, | Hy e0 -
Integration of Eq. (150) from H,,=0 to H,,=H,, gives
2
3u, H
W Varl ) 2 2
A M\Hp — Ho i +2m, | Ho ] Hj
2
Ho He
ZTVM H, ] M|'H,, (151)
e

where (H, /H,;)* and M, are defined by

H 2

2
e _ H, e 2
HeO ] fo HeO dHeO ’ (152a)
3p,
M, =( — o) ———Hy=( —uyH, . (152b)
MoV = A — Ko L + 200, 0~ My — Mo/l

If pp >y, then (H, /H,0) 2 < 1.

It can readily be shown that if the constraint of fixed A
is replaced by that of a fixed current in the source of the
field H,,, then H, /H,,=1 and the work W delivered to
the mechanical work source is

WHZHZEVMMI.HO . (153)
Thus for materials that are characterized by pu,, > pu,,
Since, at fixed A, there is no exchange of energy with

the current source the change in the energy of the field
(i.e., — W, ) is given by

Ho H, |?
UM—UMoz—_i—VM ;I_e: M;-H,,
e

where U, denotes the initial energy, i.e., when the
sphere is outside the field.

In the next step, the field is increased by the current
source to its original value H,, that prevailed in the ab-
sence of the sphere. At the end of this process the excess
of the magnetic energy, i.e., relative to its value in the ab-
sence of the sphere, is simply U,,; [see Eq. (115)]. Recall
that when the sphere is introduced quasistatically into
the field at fixed H, and variable A, the work done by the
field on the mechanical work source is Wy [see Eq.
(153)]. It follows that the work done by the current
sources in reestablishing the field and magnetizing the
sphere is Wy + Uy,. Thus, in this case, the ratio of work
delivered to build the field of the sphere to that delivered
to the mechanical work source is

(154)

Usy _ 1l M
Wu 3y —io

If the sphere is small enough that the error introduced by
assuming (H, /H,,)*=1 is negligible then using W, = Wy,

3187

1

is justified. If p,=p,, then Uy /Wy =1 However, if
Uy > g, then Uy /Wy <1 Thus at fixed H, the work
delivered by the current source to the mechanical work
source is at least three times the work it delivers in mag-
netizing the sphere. This result is a consequence of the
geometry of the sphere. If the sphere is magnetized
directly in the field by increasing its intensity from H, =0
to H,=H,, then the magnetic energy of the sphere is
U, [see Egs. (107), (114), and (115)] and no work is

delivered to an external mechanical source:

5] 2

—FHj . (155)
pa 2, °

, 1
U= 2 Vi (tear — )
Thus the magnetic chemical potential of matter in the
form of a small sphere, with respect to the process in
which it is introduced into the field, can be defined as fol-
lows: At fixed A and (H, /H,)*=1,

Ho

=— M;-H
gk,V 2PM 1 0
1 3u,
==y o)~ —Hj , (156)
200 M T gt 2p, 0

whereas, at fixed H,, considering only changes of energy
in the field, and excluding those occurring in the current
sources, the result is

1 My
P —po)———H}E .
20 TR o, O
The analysis presented hitherto involves rigid systems.

An example of a nonrigid, variable inductance system is
discussed briefly below.

CHy, v = (157)

B. Variable inductance system

Detailed analysis of a variable inductance magnetic
field system that is characterized by a fixed core and a
plunger (see Fig. 5) is given in Appendix B. This analysis
provides additional insight regarding the effect of con-

Plunger Highly permeable

Nonmagnetic magnetic material

sleeve

h
R
I 11| Depma
| | I perpendicular
to page
| ; —] 5 v v
—> 2 Iy
| +o 1 :
| 1 i L
D,)\, |
| | £ n turns ]
[ -° A A Yy
!
I T L
| P U PR e — - — - - — d

FIG. 5. A magnetic field system consisting of a circuit with a
stationary core and a movable plunger, after Woodson and
Melcher [7].
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straints on the nature of the magnetic chemical potential
and the work delivered to the mechanical work source, to
the field, or by the field.

Furthermore, the thermodynamic significance of a
variable gap system is illustrated. This variable gap cir-
cuit is used to show the conditions that yield positive as
well as negative magnetic chemical potential at the same
fixed flux (i.e., fixed B). When the plunger is free to move
and hence the gap is variable, the energy of the system
builds up when an incompressible matter (of finite and
fixed permeability) is pushed, at fixed flux, against the
plunger, thus opening the gap. This results in a positive
magnetic chemical potential ng, v, which is a reflection of

the higher energy density of the matter in the field.
However, when the plunger is not free to move and the
gap becomes fixed as part of a rigid structure, then as
permeable matter enters the gap, at fixed flux, the energy
of the system decreases. This results in a negative chemi-
cal potential §B2,x which is a reflection of the attraction

of the matter into the field. The reference magnetic
chemical potential of permeable matter can be defined as
the one prevailing in its absence. In the former case, the
reference chemical potential corresponds to a closed gap
(or else a gap full of infinitely permeable matter), whereas
in the latter it corresponds to a gap full of nonpermeable
matter, i.e., &g p=0 and {p ,=(1/2py )B3 /g, Tespec-
tively. It follows that the minimum and maximum values
of the reference level are obtained for the variable and
fixed gap conditions, respectively.

V. SUMMARY AND CONCLUSIONS

(1) Field-dependent thermodynamic variables of a con-
tinuum depend on constraints that are imposed on the
field. In particular this applies to field-dependent exten-
sive variables, which is a new consequence of the theory.
The generalized intensive, as well as extensive variables
that are functions of field and nonfield variables, can be
used as ordinary thermodynamic variables. This con-
cerns expressions for the differential of the internal ener-
gy and potentials that are derivable therefrom. Compar-
isons of the generalized variables with those that were
previously defined elsewhere, show a complete agree-
ment.

(2) The entropy of the current source is coupled with
that of the system having a common flux linkage. This
gives rise to different forms of the entropy according to
the imposed field constraint. At fixed B, where no energy
exchange exists with the current source, the entropy of
the system is lower compared to its value in the absence
of the field. At fixed H, the current source exchanges en-
ergy with the system and their related entropies are thus
coupled. The value of this coupled entropy is larger than
that of the system in the absence of the field.

(3) The generalized field-dependent variables facilitate
the formulation of generalized Maxwell relations, which
must hold irrespective of the field constraints.

(4) Analyses of conventional and simple magnetic field
systems show that direct evaluation of thermodynamic
variables, that characterize these systems, agree with
those set by the general theory. This provides a valida-
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tion test for the generalized variables, in systems of
known magnetic properties that can be subjected to
different field constraints.

(5) The thermodynamic properties of a sphere in a uni-
form field can be expressed in terms of an effective ther-
modynamic permeability. This permeability facilitates
the use of a model where the effect of the field, due to the
sphere, is considered as if it were completely stored
within its boundaries. In this way, the sphere can be
treated using the principles of ordinary thermodynamics
that, otherwise, does not handle energies stored outside
the boundaries of systems.

(6) Field-dependent thermodynamic variables of a
sphere in a uniform field can be defined using the larger
number of available field constraints, i.e., as compared to
the case of a continuum. These constraints can be
defined independently, either for the uniform field, or for
the sphere.

(7) If the volume of the sphere (representing a discrete
system) is different from the volume of the subsystem in
which it is contained, then the volume of the latter may
not be a field-dependent thermodynamic variable. If the
sphere is the only source of field in the subsystem, then it
is the volume of this sphere and not that of the subsystem
that is the field-dependent thermodynamic variable (i.e.,
which characterizes the subsystem with respect to the
field).

(8) When a magnetizable sphere is introduced quasis-
tatically from infinity into a uniform field, the work
delivered to a mechanical work source (which balances
quasistatically the pull of the field) is the same irrespec-
tive of its source being the field or the current source.
The ratio of the work done by the current source in es-
tablishing the field of the sphere to that delivered to the
mechanical work source, is one-third or less, depending
on the field constraints and the permeability prevailing
outside the sphere.

(9) The variable gap magnetic circuit demonstrates the
effect of field and geometrical constraints on the magnetic
chemical potential, and the choice of its reference level.
This reference level ranges from 0 to (1/2p,,)B?/u, for
the cases of variable and fixed gaps, respectively.

(10) In a variable gap magnetic circuit that is held at
fixed flux, the magnetic chemical potential of an in-
compressible permeable matter is positive. However, if
the gap is maintained as part of a rigid and fixed struc-
ture, then at the same fixed flux, the sign of the magnetic
chemical potential is reversed.
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APPENDIX A: FORMULATION OF MAXWELL
RELATIONS

Equation (10) can be expressed in the following concise
form:
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A D13igyiysigsis,ig=0, ... 0, isFiy, igis7i,, igFis,
zofd§,+2§,dX+z ayd¥n o AD 2T
i= i=0
where — .__aXi’ % (A6)
- oX; o¢; ’
¥ "o 13U, 3Y,, ' L | XipSipYm S, Eig X Yom
i TAe 0 — Y Y
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" oy =T e , (A7)
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&+ , i=j+1,...,n. R
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Equation (A1) facilitates the formulation of Maxwell rela- 9Y,, XioSipYig oxX;, XipSiy Yig
tions that are listed below: o L )
i1,i5,i4=0,...,n, m,iyis=1,...,m'—1, i3 m,
95, 9, i, 70y,
ax =13 , (A4) Ifwehold Y,,, m=m’,...,m", fixed so thatonly Y,,,
i | XipbiYm X, K& Ym which are independent of £; and X;, contribute to dU in
oL o Eq. (A1), then this equation becomes
[1500503508505,06=0, ..., 0, D370y, l4,isFi, [¢Fiy, m'—1
m=1,...,m'—1; dU = — Zng,Jr 2 g,dx+2nm (A8)
i=j+1
ai}i, . a,?,.z (AS) where nm—an/aYm,m——l,...,m —1.

aéiz §,.3,X,.5,Ym

o, £
§11 5:‘4’X' Y,

‘6

my
U-— 2 anm

m=1

du,=d
i=j+1

Equation (A9) can be used to formulate Maxwell rela-
tions between variables that are either field independent
or field dependent; i.e., they do not involve both types as
X and §, do,

8X,~1 BY,-2 '
31-7: E, =0, . Js =1, ,my, (A10)
ax; I, '
_—5}?2: aé’,-l’ 1=0,...,J, i,=m;+1 m'—1,
(A11)
8§,1 E)Yi2 o ‘
677, =Wil, L=j+1,...,n, i,=1,...,m,
(A12)
a§i1 a"?iz )
aYi2=aXil, =j+1,...,n,
i,=m;+1,...,m"—1. (A13)

Equation (A8) facilitates the following Legendre trans-
formation:

m'—1

1<m,<m'—1. (A9

m=1 m=m,+1

f

In Egs. (A10)-(A13) all variables that are not part of the
derivative are held fixed. The use of Egs. (A8)—(A13) can
be illustrated in the following example concerning the
internal energy. In the case of a magnetizable continu-
um, the internal energy is given by [1]

dU =TdS —PdV +{dN +1H-BdV,, + V, H-dB

— 1y Hdp,, . (A14)

Equation (A14), which has the form of Eq. (A8), can be
transformed into that of Eq. (A9) if V,, and u,, are held
constant. The result is

dU(H)=TdS —PdV +§dN —V,B-dH ,

where U(H)=U —V,,H-B.
Application of Eq. (A12) in conjunction with Eq. (A15)
gives

(A15)

oT

oH

3(Vy,B)
oS

S,V,N

(A16)

H,V,N

Since B=puy(H+M) and H is fixed it follows that
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3(VyB)
as

al,,
as

~Ho
H,V,N

, (A17)
HV,N

where I, =V,,M is the magnetic moment of the material
in VM'
Combining Eqgs. (A16) and (A17) yields
oIy,
oS

ar

OH ~ T Ho

S,V,N

b
H,V,N

(A18)
Vi =const, p, =const .

Similarly, using the enthalpy [i.e., replacing in Eq. (A15)
— PdV by VdP], one obtains

aT

oH (A19)

H,P,N

S,P,N

Equation (A19) is known [6] for its use in the analysis of
the magnetocaloric effect. However, here it is derived
from the general theory. This is done by first specifying
field-related variables that must be held constant (i.e., in
the general equation) and then applying a Legendre
transformation from which the required Maxwell relation
is obtained.

APPENDIX B: ANALYSIS OF A
MAGNETIC FIELD SYSTEM

Figure 5 shows a magnetic field system [7] consisting of
a circuit with a fixed structure (i.e., core) and a plunger.
The variables of this system are as follows: the current i,
which is forced through the » turns windings and the
width of the air gap, x, between the plunger and the cen-
tral leg of the core. This system is characterized by the
following equations [7]:

ni
Hl 2 g+x ’ ( )
A=L(x)i, (B2)
2
Lx)=2E" (B3)
g +x
2 . 2.
_aun” di aun“i dx
= —_—— — B4
v g+xdt (g+x)? dt (B4)
where
a =2wd'’ (BS)

denotes the cross-sectional area of the plunger, which is
2w wide and d’ long, i.e., perpendicular to the plane of
Fig. 5. The permeability u is the same in the gap and in
the sleeves. H, and H, are the field intensities in the gap
of the right-hand side sleeve and between the plunger and
the central leg of the core, respectively, A is the flux link-
age through the windings, L (x) is the inductance of the
circuit and v is voltage across the terminals. Note that
the field in the left-hand side sleeve is —H .

The core and the plunger are made from the same
highly permeable material that is considered here to be
practically infinite, so that the field intensity and hence
also the energy stored there vanish. The magnetic energy
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of this system is

_1 a1 A2
Uy 2L(x)z 2L
Next we define the magnetic chemical potential at fixed u
and different constraints. The permeability is held fixed
by changing the amount of matter with x, at fixed tem-
perature 7, so that the density p,, and consequently,
w=ulpy, T) are invariable.

(B6)

1. Fixed A
In this case B, =A/(an) and H,=B, /u are also fixed
§BZ,V:(8UM/3NM)A,V ) (B7)

(aUM/aNM )A’Vz(aUM/ax )A’V/(aNM/ax)A,V N (BS)

2 ax

(aNM/ax )A,VzapM .

(3Uy /3x);, = (B9)

(B10)

Note that here V denotes the volume enclosing the whole
magnetic circuit. This volume includes that of the gap,
i.e., ¥, =ax. Thus the mass filling the gap at fixed density
and temperature can be varied, while holding V fixed.

Differentiating Eq. (B3), substituting the result in Eq.
(B9) and combining Egs. (B7)-(B10), in conjunction with
Eq. (B1), gives

— 2
§B2,V__2_5;H2 . (B11)
The same result applies at fixed H, and variable x, since u
of the added matter is also fixed. However, at fixed B,
and x, i.e., holding the plunger fixed in position as matter
is added into an empty gap, the sign of the chemical po-
tential reverses so that §Bz,x = —gnz, v

2. Fixed i

In this case
oL (x)
ox

and the corresponding magnetic chemical potential is ob-
tained as

(3U,, /3x ),-=%i2

§,~,V=(aUM/aNM)i=_Ep_H% .

PMm

(B12)

It follows that
(OU,y /ON 1)+ (08U, /ON,, ),-=§BZ’V+§,~,V=O (B13)

and
Si V:§32,x .

Note that the magnetic chemical potential functions
given by Eqgs. (B11) and (B12) are for the field that exists
outside its source material but is defined as part of the
system. Had we chosen the core and the plunger as our
system, i.e., excluding the gaps, the results would have
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remained the same. This is due to the fact that the field
in the gaps pertains to its source, which is the core and
plunger system, irrespective of this field being outside its
boundaries.

3. Fixed Uy

In this case, differentiating Eq. (B6) followed by rear-
rangement of terms gives
OlnL(x)___ 2 9i

ax i dx °

Since U,, is held fixed as mass enters or leaves the sys-
tem, the magnetic chemical potential vanishes:

§UM,V=(8UM/8NM)UM=O .

(B14)

(B15)

The different constraints imposed on the system affect the
proportion of work delivered to the mechanical work
source by the current source and by the field, and wheth-
er the field delivers or gains energy. In what follows the
work delivered by the current source is considered.

4. Work delivered by the current source

The work done at the terminals in a time differential dt
is obtained from Eq. (B4) as

dW(i,x)=vidt=-1-L(x)di2—uan2i2-—~——. (B16)
2 (g +x)?
5. Fixed A
In this case i =A /L (x) and hence by virtue of
di=——t LX)y A gy, (B17)
[L(x)] ox apon
we obtain

2
dW,(i,x)=MAdi —apH3dx =Adi — >dx =0. (B18)

apgn

Thus, as expected, at fixed A no work is delivered by the
current source and energy exchange can only take place
between the field and the mechanical work source.

6. Fixed i
In this case

dW,(i,x)=—paH3dx . (B19)
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Hence, using Eq. (B10) gives

aw,(i,x)=—-L-H24N,, , (B20)
Pm
[aW(i,x)/aNM]iz—;)P—H§=2§,-,V. (B21)
M

It follows that at fixed i, the work delivered by the
current source (i.e., as x decreases at fixed i) splits equally
between the field and the mechanical work source. Note
that when the mechanical work source is disconnected
from the plunger, the excess energy that remains in the
system due to the added mass can be recovered by turn-
ing the current off.

7. Fixed Uy,

In this case, combining Egs. (B10), (B14), and (B16)
gives

dwy, (i,x)= —EF‘)‘;HWM , (B22)
[0W(i,x) /3Ny 1y, = — 5-—H} . (B23)

2pm

Thus, as mass is withdrawn from the gap, at fixed U,
the current source delivers work to the mechanical work
source (e.g., the one connected to this mass) with the field
acting as a transmission agent only, i.e., with no change
in its own energy. If the electric energy of the current
source is U,, then
(aUe/aNM)U :_[aW(l,x)/aNM]UM: H% .
M 2p
(B24)

Equation (B24) facilitates the definition of the following
electromagnetic chemical potential:

£ g2 (B25)
2pm

This chemical potential is defined with respect to the sys-
tem coupled with the current source, or simply with
respect to the current source. Thus, at fixed Uy, the
magnetic chemical potential with respect to the system
vanishes, but the one with respect to the current source is
positive and equal to that prevailing at fixed A.

The results obtained here verify that the rate of change
of the work delivered to the mechanical work source with
mass is (1 /2py JH3. This is true irrespective of this work
being delivered by the current source or by the field.
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